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A method for computing band structures for three-dimensional photonic crystals is
described. The method combines a mixed finite element discretization on a uniform
grid with a fast Fourier transform preconditioner and a preconditioned subspace
iteration algorithm. Numerical examples illustrating the behavior of the method are
presented. c© 2000 Academic Press

1. INTRODUCTION

Photonic crystals are structures constructed of dielectric materials arranged in a periodic
array. In this paper we consider structures which are periodic along each of the three
orthogonal coordinate axes in space. Such structures have been found to exhibit interesting
spectral properties with respect to classical electromagnetic wave propagation, including
the appearance of band gaps. Three-dimensional photonic band gap structures have many
possible applications in lasers, microwaves, optical communications, etc. See [4, 14] for
more information on photonic crystals and their applications.

Since fabrication of these structures is currently quite challenging, computation has
become the primary tool for investigating the spectra of photonic crystals. In this paper
we propose a new computational method based on a mixed finite element discretization of
Maxwell’s equations, combined with a fast Fourier transform (FFT) preconditioner and a
preconditioned subspace iteration algorithm for finding eigenvalues. Finite element methods
have already been introduced for 2D photonic crystals [1, 8]. The 2D case is much simpler
than the 3D case since the underlying problem is scalar and a classical finite element
discretization can be used. For simplicity we consider here only the simple cubic (sc) lattice
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geometry. Except for the FFT preconditioner, the same basic techniques extend to other
typical lattice geometries.

Several other techniques have been developed for band structure calculations in general
3D photonic crystals (see, for example, the survey [4] and the references therein; see also
[20]). The most popular methods are based on truncated plane wave decompositions of
the electromagnetic field [12, 25]. These approaches are very natural and can offer fast
convergence in situations where the spatial variation of the medium is smooth. In photonic
crystals, however, it is much more common that the underlying medium is discontinuous.
In this case Gibbs-type phenomena may lead to slow convergence of the truncated field
[25]. In this paper we develop a method which is naturally suited to handle discontinuous
media, using finite element approximations which conform to the material interfaces and
do not suffer from Gibbs phenomena.

In the next section, we formulate the underlying eigenvalue problem in mixed form
over appropriate function spaces. In Section 3, we then develop a discretization scheme
for the mixed problem using Nedelec edge elements specially modified to give stable
approximations. In Section 4, we construct a fast Fourier transform preconditioner to be
used in an iterative eigenvalue approximation algorithm described in Section 5. Finally in
Section 6, the results of several numerical experiments are described.

2. PROBLEM FORMULATION

We consider classical electromagnetic wave propagation governed by Maxwell’s equa-
tions

∇ × E − iωµH = 0, (1)

∇ × H + iωεE = 0, (2)

where the magnetic permeabilityµ is assumed constant, and the dielectric coefficientε is
real, bounded, and uniformly bounded away from zero. The above equations hold on all of
R3. Settingγ = (µε)−1, it follows from (1, 2) that

∇ × γ∇ × H = ω2H, onR3, (3)

∇ · H = 0, onR3. (4)

The medium is assumed to have unit periodicity on a cubic lattice. Thus, denotingZ =
{0,±1,±2, . . .} and defining the lattice3 = Z3, we have

ε(x + n) = ε(x), for all x ∈ R3 and for alln ∈ 3.

We define the domainÄ = R3/3, equipped with the quotient topology, and the first
Brillouin zoneK = [−π, π ]3.

We are interested in finding Bloch eigenfunctions [22], that is, functionsH satisfying
(3, 4) for a particular frequencyω, and such thatH(x) = eiα·x Hα(x), whereHα is periodic
in x, andα ∈ K . For eachα ∈ K , it then follows from (3, 4) that

∇α × γ∇α × Hα = ω2Hα, in Ä, (5)

∇α · Hα = 0, in Ä, (6)
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where∇α = (∇ + iα). We will henceforth consider only the transformed system (5, 6) and
so to simplify notation we drop the subscriptα when referring toHα.

We get a weak formulation of (5, 6) by introducing the spaces

V ≡ H(curl) = {F ∈ L2(Ä)3: ∇ × F ∈ (L2(Ä))3},
V0,α = {F ∈ V :∇α · F = 0 inÄ}.

Note that the domainÄ has no boundary, so that in the above definitions, differentiation
is defined (in the distributional sense) everywhere inÄ. For F,G ∈ V , we introduce the
hermitian forms

a(F,G) =
∫
Ä

γ (∇α × F) · (∇α × G) dx, (7)

c(F,G) =
∫
Ä

F · Ḡ dx. (8)

The weak formulation of (5, 6) is then to findω ∈ R andH ∈ V0,α satisfying

a(H, F) = ω2c(H, F) for all F ∈ V0,α. (9)

The forma(·, ·) is positive semidefinite onV ×V and is positive definite onV0,α ×V0,α

for α 6= (0, 0, 0). Of course,c(·, ·) is positive definite onV × V .
We will consider (9) in mixed form. LetW ≡ H1 = {g∈ L2(Ä): ∇g∈ (L2(Ä))3} and

for ρ ∈ H1 andF ∈V , define

b(ρ, F) =
∫
Ä

∇αρ · F̄ dx.

The mixed form of (9) is then: findω∈R and(H, ρ)∈V ×W such that

a(H, F)+ b(ρ, F) = ω2c(H, F), for all F ∈ V, (10)

b(g, H) = 0, for all g ∈ W. (11)

The stability of the mixed reformulation depends two conditions [7]. The first is the so-
called Ladyzhenskaya–Babuˇska–Brezzi (LBB) condition [16, 2, 6]; i.e., there is a constant
C such that

‖w‖W ≤ C sup
X∈V
X 6=0

|b(w, X)|
‖X‖V , (12)

for all w ∈ W. The norms above are the natural norms inV andW. The second condition
is thata(·, ·) is coercive onV0,α; i.e., there is a constantc0 such that

c0‖U‖2V ≤ a(U,U ) for all U ∈ V0,α. (13)

The above conditions imply the equivalence of (10, 11) with (9). In the case ofα = (0, 0, 0),
the above conditions hold provided that one restricts the spacesV andW to functions which
are orthogonal to constants. For all otherα in K , the above conditions hold with the original
spaces [9].
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3. DISCRETIZATION

We will develop the approximation to (9) by the mixed approach. Stable and convergent
approximations to the static problem follow provided that one uses subspaces ofVh⊂V
and Wh⊂W satisfying discrete versions of the conditions (12) and (13). To guarantee
convergence for the eigenvalue problem, additional conditions need to be verified [3]. For
α= (0, 0, 0), the Nedelec approximation spaces were used for similar problems [18, 19].
To get a stable pair forα 6= (0, 0, 0), we useα-modified spaces. The convergence and
stability properties of theα-modified spaces are given in [9]. The additional conditions
which guarantee convergence for the eigenvalue problem are also verified there.

We first consider the spaceVh defined using lowest order Nedelec elements on cubes
[18, 19]. We start by partitioning the domainÄ into N×N×N smaller cubes (Ä = ⋃ j Ä j ),
each of side lengthh = 1/N. The spaceVh is defined by

Vh = {F ∈ H(curl): F |Ä j ∈ Q0,1,1× Q1,0,1× Q1,1,0}.

HereQ0,1,1 is the space of functions which are linear in the directionsy andzand constant in
thex direction. The spacesQ1,0,1 andQ1,1,0 are defined analogously. The condition thatF
be inH(curl) imposes continuity of the tangential components on the faces between cubes
and also between faces of cubes which are translations by any index in3. The tangential
component along the edges of the mesh of functions inVh are constant. In fact, any function
in Vh is uniquely determined by the values of its tangential components on the edges. One
has a nodal basis{ψ j } whereψ j has a unit component tangential to thej th edge with a
vanishing tangential component along all other edges. The support ofψ j is contained in the
cubes which contain thej th edge. We consider here the lowest order method for simplicity.
All of the techniques extend to higher order spaces in an obvious way.

The appropriate approximation spaceWh is the set of functions which are continuous
and piecewise trilinear with respect to the same mesh as used in definingVh. The spaces
which result when one orthogonalizes against constants satisfy the discrete versions of (12)
and (13) forα = (0, 0, 0). The usual nodal basis forWh shall be denoted{φ j }.

Let us considerα 6= (0, 0, 0). We need to develop spacesVα
h andWα

h which satisfy the
condition

‖w‖W ≤ C sup
X ∈Vα

h
X 6=0

|b(w, X)|
‖X‖V = C sup

X ∈Vα
h

X 6=0

|c(X,∇αw)|
‖X‖V , (14)

for allw ∈Wα
h with constantC independent ofw andh. The analogous condition is proved

in the case ofα = (0, 0, 0) by using the fact that for anyw ∈Wh, ∇w ∈Vh. Thus, we
construct spaces(Vα

h ,W
α
h ) which satisfy∇αw ∈Vα

h for all w ∈Wα
h . Although this may

seem to be a difficult problem at first, it can be handled by observing that the operator∇α
arose in Eqs. (5, 6) from the introduction of a phase factor. This motivates the introduction
of a phase factor into the definition of the mixed finite element approximation spaces.
Specifically, we define

Vα
h = span

j

{
e−iα·(x−xj )ψ j

}
,

Wα
h = span

j

{
e−iα·(x−yj )φ j

}
.

(15)
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Herexj is the center of thej th edge andyj is the node corresponding to the nodal function
φ j . In the above definition,x is taken to vary smoothly over the support of the basis functions
for degrees of freedom on the periodic boundary. It is easy to check that the above pair of
spaces satisfy∇αw ∈Vα

h for all w ∈Wα
h . The identities

∇α ×
(
e−iα·(x−xj )ψ j

) = e−iα·(x−xj )(∇ × ψ j )

and

∇α
(
e−iα·(x−yj )φ j

) = e−iα·(x−yj )∇φ j

simplify the computation of the element matrices which arise in the implementation. These
spaces are no longer spaces of piecewise polynomial functions.

The approximation and stability properties for these spaces are proved in [9]. It is shown
there that (14) holds and that there is a constantc0 independent ofh satisfying

c0‖U‖2V ≤ a(U,U ) for all U ∈V0,α
h . (16)

HereV0,α
h = {F ∈Vα

h : b(g, F) = 0 for all g∈Wα
h }.

The approximation to problem (10, 11) is then: findω∈R and(Hh, ρh)∈Vα
h ×Wα

h such
that

a(Hh, F)+ b(ρh, F) = ω2c(Hh, F), for all F ∈Vα
h , (17)

b(g, Hh) = 0, for all g∈Wα
h . (18)

The above problem is equivalent to: findHh ∈V0,α
h satisfying

a(Hh, F) = ω2c(Hh, F) for all F ∈V0,α
h . (19)

4. PRECONDITIONER

Preconditioned iteration techniques for eigenvalue problems are well studied for positive
definite Hermitian operators [5, 10, 15]. Thus, it is most natural to develop an iterative
scheme for (19). The difficulty, though, is that one does not have a computable basis for
V0,α

h . In this section, we develop a preconditioner for the problem (19) that does not require
an explicit basis forV0,α

h .
Given a functionalG on V0,α

h , a preconditioner involves finding the solutionDh ∈V0,α
h

of the problem

a0(Dh, F) = G(F), for all F ∈V0,α
h . (20)

Herea0(·, ·) is another positive definite Hermitian form onV0,α
h × V0,α

h that is spectrally
equivalent toa(·, ·).

The way that we avoid a computational basis forV0,α
h is to develop the preconditioner in

mixed form. We start by defininga0(·, ·) on V × V by (7) withγ set to be the constantγ0

which equals the maximum of the original (spatially dependent)γ . Given a functionalG
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on V0,α
h , let G̃ be any extension toVα

h . The preconditioner involves solving the problem:
Find (Dh, ηh)∈Vα

h ×Wα
h such that

a0(Dh, F)+ b(ηh, F) = G̃(F), for all F ∈Vα
h ,

b(g, Dh) = 0, for all g∈Wα
h .

(21)

It is easy to show thatDh is independent of the choice of extensionG̃. The second equation
implies thatDh is in V0,α

h . Moreover, takingF ∈V0,α
h in the first equation shows thatDh

defined by (21) satisfies (20). Note that the solution of (21) can be computed without the
use of a computational basis forV0,α

h .
The use of a constant coefficient in the definition ofa0(·, ·) enables the efficient solution

of (21). It follows from this and the definition of the bases forVα
h andWα

h that the matrices
which appear in the implementation,

A0
j,k = a0

(
e−iα·(x−xj )ψ j , e−iα·(x−xk)ψk

)
,

Bj,k = b
(
e−iα·(x−yj )φ j , e−iα·(x−xk)ψk

)
,

are periodically translationally invariant. Basis functions are connected (have a nonzero
entry) only if the corresponding edges (or nodes) are on the boundary of some cube. The
entries only depend on the geometric relation between the degrees of freedom. Clearly,
there are 3N3 edge degrees of freedom forVα

h andN3 vertex degrees of freedom forWα
h .

The periodically translationally invariant property means that the matrix problem corre-
sponding to (21),

(
A0 B∗

B 0

)(
X
Y

)
=
(

g̃

0

)
, (22)

can be efficiently solved by application of the fast Fourier transform (FFT) (hereg̃k =
G̃(e−iα·(x−xk)ψk)). To see this, we group together thex-edge degrees of freedom (DOF), the
y-edge DOF, thez-edge DOF, and the vertex DOF into separate vectors. We independently
apply the FFT to these four vectors and combine the results into a vector grouping together
the four entries correspoding to a given Fourier component. Applying this procedure to
the unknown(X,Y) and the right hand side(g̃, 0) gives a vectorẐ (still unknown) and a
transformed right hand sidêG. The resulting matrix problem is

M̂ Ẑ = Ĝ,

whereM̂ is a block 4× 4 diagonal matrix. To see this, one groups the original degrees of
freedom into blocks of four where each block is associated with a mesh cube and consists
of the three edge DOF corresponding to the smallestx, y, z values and the corresponding
vertex degree of freedom. Thus, each block has a degree of freedom for an edge parallel
to thex-axis,y-axis, andz-axis and a vertex degree of freedom. Under this reordering, the
matrix (

A0 B∗

B 0

)
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results in a matrixM which has a structure consisting of block 4× 4 matrices. Moreover,
because of periodic translational invariance, it is completely determined by theN3 blocks
(e.g.,{M1,l

j,k: l = 1, . . . , N3, j, k = 1, 2, 3, 4}) associated with any one of the cubes. Here
the upper indices give the block location while the lower identify the entry within the
block. The components in the diagonal blocks ofM̂ are the three-dimensional FFTs of
the respective components in the block 4× 4 matrices, i.e.,M̂l ,l

j,k = FFT(M1,∗
j,k )(l ) where

the FFT is with respect to the∗ index. In the implementation, one preprocesses the inverses
of the diagonal blocks of̂M . Subsequently, the computation ofDh satisfying (21) involves
three FFTs applied to the right hand side datag̃ followed by multiplication of the inverse
of the diagonal blocks followed by three inverse FFTs. The total work isO(N3 ln(N)).

5. SUBSPACE PRECONDITIONING ALGORITHM

The subspace preconditioning algorithm is intended to find a given number, says, of
the smallest eigenvalues of a large-dimensional hermitian positive definite operator. An
analysis of this method and references to other similar methods can be found in [5, 15].

Consider the problem (19). We will give the algorithm entirely in terms of its matrix
implementation. Even though the solution involves functions inV0,α

h , it is implemented in
the basis forVα

h . Let m= 3N3 be the dimension ofVα
h . Denote byA: Cm→Cm the finite

element matrix associated with the Hermitian forma(·, ·) and byC: Cm→ Cm the matrix
associated withc(·, ·). The matrix analogue of the preconditioner is the matrixS defined
by Sg̃= X whereX is the solution of (22). The subspace iteration algorithm is given as
follows:

Choose an initial set of random vectors{g̃i ∈Cm: i = 1, . . . , s} and define Rα0 =
span{Sg̃1, . . . , Sg̃s}. Note that the vectors inRα0 represent (are the coefficient vectors for)
functions inV0,α

h .

For n = 0, 1, 2, . . . , perform the iteration:
1. Compute Ritz eigenvectors{vn

j }sj=1 ⊂ Rαn and their corresponding eigenvalues
λn

1 ≤ λn
2 ≤ · · · ≤ λn

s satisfying the generalized eigenvalue problem(
Avn

j , φ
) = λn

j

(
Cvn

j , φ
)
, for all φ ∈ Rαn .

Here we use(·, ·) to denote the Hermitian inner product onCm.
2. Compute forj = 1, . . . , s,

v̂n+1
j = vn

j − S
(

Avn
j − λn

j Cv
n
j

)
.

3. DefineRαn+1 = span{v̂n+1
1 , . . . , v̂n+1

s }.
The iteration (1)–(3) is terminated when maxj {|λn

j −λn+1
j |} is smaller than some prescribed

tolerance. The resultingλ’s coincide withω2 in (19) up to the prescribed tolerance. Notice
that the matrix-vector productsAvn

j , Cvn
j areO(N3) operations. Withs fixed, one complete

iteration of this algorithm isO(N3 ln(N)). It follows from [5] that the iteration converges
at a rate which is independent ofN. We expect, as in the 2D implementation [8], that the
efficacy of the preconditioner will decrease with higher contrast materials. Thus the number
of iterations required for a given tolerance should increase with increasing material contrast.

For a full band structure calculation one generally solves a sequence of problems cor-
responding to a sample of points{αm}⊂ K . The eigenvalues and eigenvectors depend
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continuously onα. Consequently the eigenvectors forαm provide a good approximation to
those forαm+1 provided that|αm− αm+1| is small. However, the approximation subspaces
depend onα and the eigenvalue iteration algorithm requires that the initial subspace corre-
spond to functions inV0,α

h so the subspace corresponding toαm cannot be directly used as
an initial subspace forαm+1. Instead, we define an initial subspace forαm+1 as follows. Let
{vαm

1 , . . . , vαm
s } be the eigenvectors forαm. We define{vαm+1

1 , . . . , vαm+1
s } byvαm+1

i = X where
X is the solution of (22) with̃g = A0v

αm
i . Here the matricesA0 andB (appearing in (22)) are

defined in terms ofαm+1. It is easy to show that the vectors{vαm+1
1 , . . . , vαm+1

s } correspond to
functions inV0,αm+1

h and provide no worse approximation to the eigenvectors corresponding
toαm+1 than that given by{vαm

1 , . . . , vαm
s }. Thus, we use span{vαm+1

1 , . . . , vαm+1
s } as an initial

subspace for theαm+1 computation. This gives good starting subspaces provided that we
choose a sequence ofα’s such that the differences|αm−αm+1| are small. Proceeding in this
way, one typically requires only a small number of subspace iterations for each subsequent
problem after the first.

6. NUMERICAL EXPERIMENTS

We performed several experiments to check the method. First in the case of a homoge-
neous medium, we checked eigenvalues produced by the method against exact solutions.
Convergence was observed as the discretization levelN was increased, with no spurious
modes. WithN= 32, the maximum error in the first 50 eigenvalues was approximately
0.6%. Next we checked the method against results in the literature obtained with the plane
wave expansion method. These are illustrated in the two examples below. We note that a
complete convergence analysis of this method is performed in [9], so that our goal here is
only to illustrate practical behavior of the method in a few simple cases.

Figure 2 shows a simple “scaffold” structure, similar to that analyzed by S¨ozüer and
Haus [24]. All calculations were performed on a 16×16×16 finite element grid. Figure 2c
illustrates the band structure asα varies along lines connecting points of high symmetry in
K (shown in Fig. 1). This calculation found ten eigenvalues at each of 90 values ofα and
required approximately one hour on a single processor SGI Origin 2000. The density of
states in Fig. 2d was calculated using ten eigenvalues at 4096 uniformly spaced points in
the reduced Brillouin zone.

FIG. 1. Brillouin zoneK showing symmetry points used for band structure plots in Figs. 2c and 3c.
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FIG. 2. Scaffold structure. (a) Basic structure, showing 2× 2× 2 array of cells. Refractive index is 3.6 in
solid regions, 1 outside. (b) Computational cell. (c) Band structure, dashed lines indicate gap edges. (d) Density
of states.

Figure 3 shows a layered silicon structure. This structure was analyzed by Hoet al.
[13] and later fabricated in silicon at infrared lengthscales and analyzed by Linet al. [17].
Similar structures were analyzed by S¨ozüer and Dowling [23], and the idea for this type
of layered structure has been attributed to unpublished work of Pendry and MacKinnon.
We note that the lattice can be considered as a face-centered-cubic (fcc) primitive unit cell
with a basis of two rods; however, for computational simplicity we took the fundamental
cell to be the 1× 1×√2 rectangular solid shown in Fig. 3b. The density of states Fig. 3d
was calculated by computing sixteen eigenvalues at each of 4096 uniformly spaced points
in the reduced Brillouin zone. The results agree well with [17], although there is a small
discrepancy in the location of the gap. This can be attributed to a slight difference in bar
width, which we chose atw = 0.25 to align with our computational grid, whereas [17]
usedw = 0.28.

Finally, we present the results of comparisons of our method against two plane wave
methods, a Galerkin, and a collocation formulation. We shall not give details of these meth-
ods here although the difference in the two methods is their treatment ofγ appearing in
the form a(·, ·). These plane wave methods fall into the general framework of spectral
methods and some details of their implementation can be found in, for example, [11, 21].
Tables I and II give the first two eigenvalues as a function of the mesh size and method for the
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TABLE I

First Eigenvalue

N A B C

8 2.98 3.94 2.84
16 2.95 3.39 2.90
32 2.94 3.15 2.92
64 2.93 3.04 2.92

TABLE II

Second Eigenvalue

N A B C

8 7.70 8.29 7.17
16 7.30 7.74 7.14
32 7.19 7.45 7.14
64 7.16 7.30 7.14

FIG. 3. Layered bar structure. (a) Basic structure, showing one layer. Refractive index is 3.6 in bars, 1 outside.
(b) Computational cell. (c) Band structure, dashed lines indicate gap edges. (d) Density of states.
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scaffold structure of Fig. 2 forα = (π, 0, 0). Here A denotes the mixed method described in
this paper, B denotes the Galerkin plane wave approach, and C denotes the collocation plane
wave approach. It can be shown that eigenvalue approximation from Method B converges
monotonically from above to the desired eigenvalue asN increases. This is illustrated by
the tabulated results. Method A also appears to converge in the same way. Surprisingly
though, Method C appears to converge monotonically from below. Method B seems to
be converging slower than the other two methods. In contrast, Method C appears to be
converging fastest (although very little has been proved about the method).

7. CONCLUSION

We have presented a new method for computing band structures in general three-
dimensional photonic crystals. The method combines a mixed finite element discretiza-
tion, a fast Fourier transform preconditioner, and a subspace iteration algorithm to find
approximate eigenvalues. The finite element discretization of the field is naturally suited
to handle discontinuous media, and the subspace iteration algorithm is very efficient for
computing continuously varying families of eigenvalues. Improvements in the method may
be possible by investigating other eigenvalue iteration schemes or by extending the dis-
cretization scheme to allow unstructured grids.
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