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A method for computing band structures for three-dimensional photonic crystals is
described. The method combines a mixed finite element discretization on a uniform
grid with a fast Fourier transform preconditioner and a preconditioned subspace
iteration algorithm. Numerical examples illustrating the behavior of the method are
presented. (© 2000 Academic Press

1. INTRODUCTION

Photonic crystals are structures constructed of dielectric materials arranged in a peri
array. In this paper we consider structures which are periodic along each of the th
orthogonal coordinate axes in space. Such structures have been found to exhibit intere
spectral properties with respect to classical electromagnetic wave propagation, incluc
the appearance of band gaps. Three-dimensional photonic band gap structures have
possible applications in lasers, microwaves, optical communications, etc. See [4, 14]
more information on photonic crystals and their applications.

Since fabrication of these structures is currently quite challenging, computation |
become the primary tool for investigating the spectra of photonic crystals. In this paj
we propose a new computational method based on a mixed finite element discretizatio
Maxwell's equations, combined with a fast Fourier transform (FFT) preconditioner anc
preconditioned subspace iteration algorithm for finding eigenvalues. Finite element meth
have already been introduced for 2D photonic crystals [1, 8]. The 2D case is much simj
than the 3D case since the underlying problem is scalar and a classical finite elen
discretization can be used. For simplicity we consider here only the simple cubic (sc) latt
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geometry. Except for the FFT preconditioner, the same basic techniques extend to c
typical lattice geometries.

Several other techniques have been developed for band structure calculations in ge
3D photonic crystals (see, for example, the survey [4] and the references therein; see
[20]). The most popular methods are based on truncated plane wave decompositior
the electromagnetic field [12, 25]. These approaches are very natural and can offer
convergence in situations where the spatial variation of the medium is smooth. In photc
crystals, however, it is much more common that the underlying medium is discontinuc
In this case Gibbs-type phenomena may lead to slow convergence of the truncated
[25]. In this paper we develop a method which is naturally suited to handle discontinuc
media, using finite element approximations which conform to the material interfaces «
do not suffer from Gibbs phenomena.

In the next section, we formulate the underlying eigenvalue problem in mixed for
over appropriate function spaces. In Section 3, we then develop a discretization sch
for the mixed problem using Nedelec edge elements specially modified to give sta
approximations. In Section 4, we construct a fast Fourier transform preconditioner to
used in an iterative eigenvalue approximation algorithm described in Section 5. Finally
Section 6, the results of several numerical experiments are described.

2. PROBLEM FORMULATION

We consider classical electromagnetic wave propagation governed by Maxwell's eg
tions

Vx E—-iouH =0, Q)

V x H+iweE =0, (2)
where the magnetic permeabilityis assumed constant, and the dielectric coefficiant
real, bounded, and uniformly bounded away from zero. The above equations hold on a
R3. Settingy = (ue)™ L, it follows from (1, 2) that

V x yV x H = w?H, onR3, 3)
V-H =0, onR3. (4)

The medium is assumed to have unit periodicity on a cubic lattice. Thus, derbtiag
{0, 1, +2, ...} and defining the latticd. = Z3, we have

e(X+n) =e€(x), for all x € R® and for alln € A.

We define the domai2 = R3/A, equipped with the quotient topology, and the first
Brillouin zoneK = [—x, ]3.

We are interested in finding Bloch eigenfunctions [22], that is, functidnsatisfying
(3, 4) for a particular frequenay, and such tha (x) = €**H, (x), whereH, is periodic
in X, anda € K. For each € K, it then follows from (3, 4) that

Vo X yVy X Hy = @?Hy, in Q, (5)
V, - H, =0, in Q, (6)
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whereV, = (V +ia). We will henceforth consider only the transformed system (5, 6) an
so to simplify notation we drop the subscriptvhen referring taH,, .
We get a weak formulation of (5, 6) by introducing the spaces
V = H(curl) = {F € L2(2)% V x F € (L)%},
VO = (FeV:V,-F=0inQ}.
Note that the domai® has no boundary, so that in the above definitions, differentiatio

is defined (in the distributional sense) everywher&irFor F, G € V, we introduce the
hermitian forms

a(F,G) = / Y (Ve X F) - (V4 x G) dX, @)
Q

c(F, G):/ F.Gdx (8)
Q

The weak formulation of (5, 6) is then to finde R andH e V% satisfying
a(H, F) = w’c(H,F)  forall F e V%, (9)

The formay., -) is positive semidefinite oN x V and is positive definite ol/®¢ x Vo«
for a # (0, 0, 0). Of courseg(., -) is positive definite orv x V.

We will consider (9) in mixed form. Le? = H! = {ge L?(Q): Vge (L?(2))%} and
for p e H! andF eV, define

b(p, F) = / Vaep - Fdx.
Q
The mixed form of (9) is then: find € R and(H, p) € V x W such that

a(H, F) +b(p, F) = w’c(H,F), forallF eV, (10)
b(g, H) =0, forallg e W. (12)

The stability of the mixed reformulation depends two conditions [7]. The first is the si
called Ladyzhenskaya—Batka—Brezzi (LBB) condition [16, 2, 6]; i.e., there is a constant
C such that

lb(w, X)|
lwllw < Csup———, (12)
xev I Xllv
X0
for all w € W. The norms above are the natural norm¥iandW. The second condition
is thata(-, -) is coercive oV ®¢; i.e., there is a constang such that

clUl3 <aU,U) forallU e Voo, (13)

The above conditions imply the equivalence of (10, 11) with (9). In the case-0{0, 0, 0),
the above conditions hold provided that one restricts the spaeasi\W to functions which
are orthogonal to constants. For all othén K, the above conditions hold with the original
spaces [9].
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3. DISCRETIZATION

We will develop the approximation to (9) by the mixed approach. Stable and converg
approximations to the static problem follow provided that one uses subspavgs of
and W, ¢ W satisfying discrete versions of the conditions (12) and (13). To guarant
convergence for the eigenvalue problem, additional conditions need to be verified [3].
a=(0, 0, 0), the Nedelec approximation spaces were used for similar problems [18, 1
To get a stable pair for # (0, 0, 0), we usex-modified spaces. The convergence anc
stability properties of the.-modified spaces are given in [9]. The additional condition:
which guarantee convergence for the eigenvalue problem are also verified there.

We first consider the spadé, defined using lowest order Nedelec elements on cube
[18, 19]. We start by partitioning the domaininto N x N x N smaller cubes®@ = Uj Qj),
each of side length = 1/N. The spacé/, is defined by

Vh = {F e H(curl): Flg, € Qo11 x Q101 x Qr10}-

HereQqg 1.1 is the space of functions which are linear in the directipaadz and constant in
thex direction. The space®; 0.1 andQy 1,0 are defined analogously. The condition tRat
be inH (curl) imposes continuity of the tangential components on the faces between cu
and also between faces of cubes which are translations by any indexTihe tangential
component along the edges of the mesh of functioNg iare constant. In fact, any function
in Vi, is uniquely determined by the values of its tangential components on the edges. ¢
has a nodal basig/;} whereys; has a unit component tangential to thi edge with a
vanishing tangential component along all other edges. The suppgytistontained in the
cubes which contain thgh edge. We consider here the lowest order method for simplicit
All of the techniques extend to higher order spaces in an obvious way.

The appropriate approximation spad4 is the set of functions which are continuous
and piecewise trilinear with respect to the same mesh as used in défipiiitpe spaces
which result when one orthogonalizes against constants satisfy the discrete versions of
and (13) fore = (0, 0, 0). The usual nodal basis fak, shall be denotedp; }.

Let us considetr # (0, 0, 0). We need to develop spac¥§ andW; which satisfy the
condition

b(w, X X, Vg
lbw, Xl _ ~ gy 1€ Vaw)]

Jwlw < C sup , (14)
xeve  I1XIlv xeve Xl
X#0 X#0

for all w € WY with constantC independent ofv andh. The analogous condition is proved
in the case ofx = (0, 0, 0) by using the fact that for any € W, Vw € V;,. Thus, we
construct spaceéV,y, Wyy) which satisfyV,w € Vyy for all w € W'. Although this may
seem to be a difficult problem at first, it can be handled by observing that the opegator
arose in Egs. (5, 6) from the introduction of a phase factor. This motivates the introduct
of a phase factor into the definition of the mixed finite element approximation spac
Specifically, we define

Ve = spa{e XDy
j

. 15
Wg = spa{e™'“*¥g; 1. (15)
i
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Herex; is the center of thg¢th edge and; is the node corresponding to the nodal function
¢;. Inthe above definitiorx is taken to vary smoothly over the support of the basis function
for degrees of freedom on the periodic boundary. It is easy to check that the above pa
spaces satisfy,w € V| for all w e Wyy. The identities

Va X (e—i()l~(X—XJ),¢/j) — e—ia-(X—XJ)(V X wl)
and
v, (e*ia-(X*Yj)(pj) — e*iOh(X*Yj)V(bj

simplify the computation of the element matrices which arise in the implementation. The
spaces are no longer spaces of piecewise polynomial functions.

The approximation and stability properties for these spaces are proved in [9]. It is shc
there that (14) holds and that there is a constaimdependent of satisfying

cwlUlZ <aU,U)  forallueVXe. (16)

HereV** = {F € V¥ b(g, F) = O for all g ¢ W¢}.
The approximation to problem (10, 11) is then: find R and(Hn, pn) € V& x W such
that

a(Hn, F) +b(pn, F) = w’c(Hp, F),  forall F e V2, (17)
b(g, Hh) =0, for all g e WY. (18)

The above problem is equivalent to: filt € V,?'“ satisfying

a(Hp, F) = w’c(Hh, F)  forall F e >“, (19)

4. PRECONDITIONER

Preconditioned iteration techniques for eigenvalue problems are well studied for posi
definite Hermitian operators [5, 10, 15]. Thus, it is most natural to develop an iterati
scheme for (19). The difficulty, though, is that one does not have a computable basis
Vr?'“. In this section, we develop a preconditioner for the problem (19) that does not requ
an explicit basis fol>*.

Given a functionalG on Vho’“, a preconditioner involves finding the solutidn, € Vr?’“
of the problem

a(Dn, F) = G(F),  forall F eV . (20)

Hereag(-, -) is another positive definite Hermitian form M‘f’“ X Vho’“ that is spectrally
equivalent taa(, -).

The way that we avoid a computational basis¥@F* is to develop the preconditioner in
mixed form. We start by definingy(-, -) onV x V by (7) with y set to be the constam
which equals the maximum of the original (spatially dependentpiven a functionals
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on Vho’“, let G be any extension t¥¥. The preconditioner involves solving the problem:
Find (D, nn) € V¥ x W such that

ao(Dn, F) + b, F) = G(F),  forall Fe Vg,

_ (21)
b(g, Dn) = 0, forall ge W.
Itis easy to show thaby, is independent of the choice of extensi@®nThe second equation
implies thatDy, is in V,?’“. Moreover, takingr € Vr?"" in the first equation shows th&ly,
defined by (21) satisfies (20). Note that the solution of (21) can be computed without
use of a computational basis faf**.
The use of a constant coefficient in the definitioragf, -) enables the efficient solution
of (21). It follows from this and the definition of the bases Yt andW; that the matrices
which appear in the implementation,

A(j) = ao(e—ia.(x—xj)wj , e_ia'(x_xk>1/fk):
Bj,k — b(e*iﬂl'(X*Yj)(bj , efia-(fok)wk)’

are periodically translationally invariant. Basis functions are connected (have a nonz
entry) only if the corresponding edges (or nodes) are on the boundary of some cube.
entries only depend on the geometric relation between the degrees of freedom. Cle
there are BI° edge degrees of freedom g and N3 vertex degrees of freedom faye.
The periodically translationally invariant property means that the matrix problem cort

sponding to (21),
A0 B* X o)
(2 5)(7)-() @

can be efficiently solved by application of the fast Fourier transform (FFT) (Bere
G(e ')y, )). To see this, we group together thedge degrees of freedom (DOF), the
y-edge DOF, the-edge DOF, and the vertex DOF into separate vectors. We independer
apply the FFT to these four vectors and combine the results into a vector grouping toge
the four entries correspoding to a given Fourier component. Applying this procedure
the unknown(X, Y) and the right hand sidgj, 0) gives a vectoiZ (still unknown) and a
transformed right hand sid@. The resulting matrix problem is

MZ =G,

whereM is a block 4x 4 diagonal matrix. To see this, one groups the original degrees
freedom into blocks of four where each block is associated with a mesh cube and con:
of the three edge DOF corresponding to the smalegt z values and the corresponding
vertex degree of freedom. Thus, each block has a degree of freedom for an edge pal
to thex-axis, y-axis, andz-axis and a vertex degree of freedom. Under this reordering, t

matrix
A0 B*
B O
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results in a matriM which has a structure consisting of blockk44 matrices. Moreover,
because of periodic translational invariance, it is completely determined by3iéocks
(e.g.,{Mjlji'(:I =1,...,N% j k=12 3, 4}) associated with any one of the cubes. Here
the upper indices give the block location while the lower identify the entry within th
block. The components in the diagonal blocksMfare the three-dimensional FFTs of
the respective components in the bloclk 4 matrices, i.e.l\?l'j’y'k = FFT(Mjl;,f)(I) where
the FFT is with respect to theindex. In the implementation, one preprocesses the invers
of the diagonal blocks ofl. Subsequently, the computationdf; satisfying (21) involves
three FFTs applied to the right hand side datallowed by multiplication of the inverse

of the diagonal blocks followed by three inverse FFTs. The total woek(s 3 In(N)).

5. SUBSPACE PRECONDITIONING ALGORITHM

The subspace preconditioning algorithm is intended to find a given numbes, sy
the smallest eigenvalues of a large-dimensional hermitian positive definite operator.
analysis of this method and references to other similar methods can be found in [5, 15]

Consider the problem (19). We will give the algorithm entirely in terms of its matri;
implementation. Even though the solution involves function‘d,?r?, it is implemented in
the basis fol®. Letm = 3N? be the dimension 0,*. Denote byA: C™ — C™ the finite
element matrix associated with the Hermitian faa -) and byC: C™ — C™ the matrix
associated witte(-, -). The matrix analogue of the preconditioner is the ma8itefined
by S§ = X where X is the solution of (22). The subspace iteration algorithm is given a
follows:

Choose an initial set of random vectofg eC™i=1,...,s} and define R§ =
spar{S§i, . .., SGs}. Note that the vectors iRj represent (are the coefficient vectors for)
functions inv>“.

Forn=0,1,2, ..., perform the iteration:
1. Compute Ritz eigenvectofs]};_; C Ry and their corresponding eigenvalues
A < A5 < ... <Al satisfying the generalized eigenvalue problem

(Av?, ¢) = )JJ.‘(CU?, ), forall ¢ € RY.

Here we use-, -) to denote the Hermitian inner product 6'.
2.Compute forf = 1,...,s,

~n+l _ . n n n n
U] = —S(Avi —Aijj).

3. DefineRY, ; = sparfdf*t, ..., 90+1).

The iteration (1)—(3) is terminated when m@i " — x?*ln is smaller than some prescribed
tolerance. The resulting's coincide withw? in (19) up to the prescribed tolerance. Notice
that the matrix-vector productsvf, Cof! areO(N?) operations. Witls fixed, one complete
iteration of this algorithm iD(N®In(N)). It follows from [5] that the iteration converges
at a rate which is independent Nf. We expect, as in the 2D implementation [8], that the
efficacy of the preconditioner will decrease with higher contrast materials. Thus the num
of iterations required for a given tolerance should increase with increasing material contr
For a full band structure calculation one generally solves a sequence of problems
responding to a sample of pointen} € K. The eigenvalues and eigenvectors depent
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continuously orx. Consequently the eigenvectors &g provide a good approximation to
those foray 1 provided thatey, — amy 1| is small. However, the approximation subspace:
depend o and the eigenvalue iteration algorithm requires that the initial subspace cor
spond to functions irV,?"‘ so the subspace correspondingegpcannot be directly used as
an initial subspace far,. ;. Instead, we define an initial subspacedgy,; as follows. Let
{vi™, ..., v} be the eigenvectors fof,. We defingv;™*, ..., v2m} by v™* = X where

X is the solution of (22) witl§j = A%". Here the matriceA° andB (appearing in (22)) are
defined in terms ofm1. Itis easy to show that the vectdrs ™", . . ., v} correspond to
functions inVr?""rn+1 and provide no worse approximation to the eigenvectors correspondi
t0 a1 than that given byv(™, .. ., v&m}. Thus, we use spao, ™", ..., v¢m1} as an initial
subspace for then,; computation. This gives good starting subspaces provided that \
choose a sequence®$ such that the differenceés, — am 1| are small. Proceeding in this
way, one typically requires only a small number of subspace iterations for each subseq
problem after the first.

6. NUMERICAL EXPERIMENTS

We performed several experiments to check the method. First in the case of a hom
neous medium, we checked eigenvalues produced by the method against exact solu
Convergence was observed as the discretization lMwehs increased, with no spurious
modes. WithN =32, the maximum error in the first 50 eigenvalues was approximate
0.6%. Next we checked the method against results in the literature obtained with the pl
wave expansion method. These are illustrated in the two examples below. We note tt
complete convergence analysis of this method is performed in [9], so that our goal hel
only to illustrate practical behavior of the method in a few simple cases.

Figure 2 shows a simple “scaffold” structure, similar to that analyzed di& and
Haus [24]. All calculations were performed on ax1.&6 x 16 finite element grid. Figure 2c
illustrates the band structure @varies along lines connecting points of high symmetry in
K (shown in Fig. 1). This calculation found ten eigenvalues at each of 90 valuearud
required approximately one hour on a single processor SGI Origin 2000. The density
states in Fig. 2d was calculated using ten eigenvalues at 4096 uniformly spaced poin
the reduced Brillouin zone.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIG. 1. Brillouin zoneK showing symmetry points used for band structure plots in Figs. 2c and 3c.
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FIG. 2. Scaffold structure. (a) Basic structure, showing 2 x 2 array of cells. Refractive index is 3.6 in
solid regions, 1 outside. (b) Computational cell. (c) Band structure, dashed lines indicate gap edges. (d) De
of states.

Figure 3 shows a layered silicon structure. This structure was analyzed gt &lo
[13] and later fabricated in silicon at infrared lengthscales and analyzed kst kin[17].
Similar structures were analyzed bgZAér and Dowling [23], and the idea for this type
of layered structure has been attributed to unpublished work of Pendry and MacKinn
We note that the lattice can be considered as a face-centered-cubic (fcc) primitive unit
with a basis of two rods; however, for computational simplicity we took the fundament
cell to be the Ix 1 x +/2 rectangular solid shown in Fig. 3b. The density of states Fig. 3
was calculated by computing sixteen eigenvalues at each of 4096 uniformly spaced pc
in the reduced Brillouin zone. The results agree well with [17], although there is a sm
discrepancy in the location of the gap. This can be attributed to a slight difference in |
width, which we chose av = 0.25 to align with our computational grid, whereas [17]
usedw = 0.28.

Finally, we present the results of comparisons of our method against two plane wi
methods, a Galerkin, and a collocation formulation. We shall not give details of these me
ods here although the difference in the two methods is their treatmgntappearing in
the formag-, -). These plane wave methods fall into the general framework of spect
methods and some details of their implementation can be found in, for example, [11, -
Tables | and Il give the first two eigenvalues as a function of the mesh size and method for



BAND STRUCTURE IN 3D PHOTONIC CRYSTALS 677

TABLE |
First Eigenvalue

N A B C
8 2.98 3.94 2.84
16 2.95 3.39 2.90
32 2.94 3.15 2.92
64 2.93 3.04 2.92
TABLE Il

Second Eigenvalue

N A B C

8 7.70 8.29 7.17
16 7.30 7.74 7.14
32 7.19 7.45 7.14
64 7.16 7.30 7.14

density

M/M“

) ot 02 03 a4 05 06 07 08
T X M R T z r M /2%

FIG. 3. Layered bar structure. (a) Basic structure, showing one layer. Refractive index is 3.6 in bars, 1 outs
(b) Computational cell. (c) Band structure, dashed lines indicate gap edges. (d) Density of states.
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scaffold structure of Fig. 2 faxr = (r, 0, 0). Here A denotes the mixed method described ir
this paper, B denotes the Galerkin plane wave approach, and C denotes the collocation |
wave approach. It can be shown that eigenvalue approximation from Method B conver
monotonically from above to the desired eigenvaludascreases. This is illustrated by
the tabulated results. Method A also appears to converge in the same way. Surprisil
though, Method C appears to converge monotonically from below. Method B seems
be converging slower than the other two methods. In contrast, Method C appears fc
converging fastest (although very little has been proved about the method).

7. CONCLUSION

We have presented a new method for computing band structures in general th
dimensional photonic crystals. The method combines a mixed finite element discreti
tion, a fast Fourier transform preconditioner, and a subspace iteration algorithm to f
approximate eigenvalues. The finite element discretization of the field is naturally sui
to handle discontinuous media, and the subspace iteration algorithm is very efficient
computing continuously varying families of eigenvalues. Improvements in the method nr
be possible by investigating other eigenvalue iteration schemes or by extending the
cretization scheme to allow unstructured grids.
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